Irrigation Water Conveyance (ft) Low pressure, Underground, Plastic Pipeline ## Definition A pipeline and appurtenances installed in an irrigation system. #### Scope This standard applies to underground thermoplastic pipelines from 4 to 18 in. in diameter that are subject to internal pressures up to 50 lb/in.2. The standard includes the design criteria for these irrigation pipelines, the minimum installation requirements, and the specifications for the thermoplastic pipe to be used. It applies to pipelines with stands and vents open to the atmosphere and to pipelines not open to th atmosphere but provided with pressure-relief valves and air-and-vacuum valves. #### Purpose To prevent erosion or loss of water quality or damage to the land, to make possible the proper management of irrigation water, and to reduce water conveyance losses. ## Conditions where practice applies All pipelines shall be planned and located to serve an integral part of an irrigation water distribution or conveyance system designed to facilitate the conservation use and management of the soil and water resources on a farm or group of farms. The water supply and quality and rate of irrigation delivery for the area served by the pipeline shall be sufficient to make irrigation practical for the crops to be grown and the irrigation water application methods to be used. Plastic pipelines installed according to this standard shall be placed only in suitable soils where the bedding and backfill requirements can be fully met. USDA-SCS NHCP-430EE-1 January 1989 t 97 331 12/9/92 ## Planning considerations ### Water Quantity - 1. Effects on the water budget, especially on infiltration and evaporation. - 2. Effects on downstream flows or aquifers that would affect other water uses or users. - 3. Potential use for irrigation water management. - 4. Effects of installing a pipeline on vegetation that may have been located next to the original conveyance. ### Water Quality - 1. Effects of installing the pipeline (replacing other types of conveyances) on channel erosion or the movement of sediment and soluble and sediment-attached substances carried by water. - 2. Effects on the movement of dissolved substances into the soil, percolation below the root zone or to ground water recharge. - 3. Effects of controlled water delivery on the temperatures of water resources that could cause undesirable effects on aquatic and wildlife communities. - 4. Effects on wetlands or water-related wildlife habitats. - 5. Effects on the visual quality of water resources. ### Design criteria <u>Working pressure</u>. The pipeline shall be designed to meet all service requirements without a static or working pressure including hydraulic transients, at any point greater than the maximum allowable working pressure of the pipe used at that point The static or working pressure of pipelines open to the atmosphere shall include freeboard. Maximum allowable working pressure for lowhead plastic irrigation pipe shall be 50 ft or head or 22 lb\in.2. Pipelines constructed of 50-lb/in.2 plastic irrigation pipe or the IPS pipe covered by this standard shall have a working pressure no greater than 50 lb\in.2. Plastic pipeline requiring a working pressure greater than 50 lb/in.2 shall be constructed according to the requirements specified in 430-DD of this standard. Plastic pipe pressure rating normally is based on a water temperature of 73.4 degrees F. Factors for adjusting allowable working pressure for higher water temperature given in table 1. Table 1. - Pressure rating factors for PVC and PE pipe for water at elevated temperatures. | Temperature, OF | PVC | PE | |-----------------|------|-------------| | 73.4 | 1.0 | 1 0 | | 80 | 0.88 | 1.0
0.92 | | 90 | 0.75 | 0.81 | | 100 | 0.62 | 0.70 | | 110 | 0.50 | | | 120 | 0.40 | | | 130 | 0.30 | | | 140 | 0.22 | | NOTE: To obtain the pipe's reduced pressure rating because of a water temperature greater than 73.4 deg. F, multiply the normal pressure rating by the appropriate factor from table 1. <u>Friction losses</u>. For design purposes, friction head losses shall be no less than those computed by the Hazen-Williams equation, using a roughness coefficient, c, equal to 150. Flow velocity. The full-pipe design water velocity in the pipeline when operating at system capacity should not exceed 5 ft/s. <u>Capacity</u>. The design capacity of the pipeline shall be based on whichever of the following criteria requires the larger amount of water. - 1. The capacity shall be sufficient to deliver the volume of water required to meet the peak-period consumptive use of the crop or crops to be irrigated. - 2. The capacity shall be sufficient to provide an adequate irrigation stream for all methods of irrigation planned. Outlets. Appurtenances to deliver water from the pipe system to the land, to a ditch or a reservoir, or to any surface pipe system shall be known as outlets. Outlets shall have adequate capacity at design working pressure to deliver the required flow to (1) the hydraulic gradeline of a pipe or ditch, (2) a point at least 6 in. above the field surface, or (3) the design in surface elevation in a reservoir. <u>Check valves</u>. A check valve shall be installed between the pump discharge and the pipeline if backflow may occur. Stands open to the atmosphere. Stands shall be used wherever water enters the pipeline system to avoid entrapment of air, to prevent surge pressures, to avoid collapse because of negative pressures, and to prevent the pressure from exceeding the maximum allowable working pressure of the pipe. Open stands may be required at other locations in low-head systems to perform other functions. Stands shall be constructed of steel pipe or other approved material and be supported on a base adequate to support the stand and prevent movement or undue stress on the pipeline. Open stands shall be designed to meet or exceed the following criteria: - 1. Each stand shall allow at least 1 ft. of freeboard above design working head. The stand height above the centerline of the pipeline shall be such that neither the static head nor the design working head plus freeboard exceeds the allowable working pressure of the pipe. - 2. The top of each stand shall extend at least 4 ft. above the ground surface except for surface gravity inlets or where visibility is not a factor. Gravity inlets shall be equipped with a trash guard. - 3. The downward water velocity in stands shall not exceed 2 ft/s. The inside diameter of the stand shall not be less than the inside diameter of the pipeline. This downward velocity criterion applies only to stands having vertical offset inlets and outlets. - 4. If the water velocity in the inlet (from the pump or other water source) equals or exceeds three times the velocity in the outlet pipeline, the centerline of the inlet shall have a minimum vertical offset from the centerline of the outlet at least equal to the sum of the diameters of the inlet and outlet pipes. - 5. The cross-sectional area of stands may be reduced above a point 1 ft. above the top of the upper inlet or outlet pipe, but the reduced cross section shall not be such that it would produce an average velocity of more than 10 ft/s if the entire flow were discharging through it. - 6. Vibration-control measures, such as special couplers or flexible pipe, shall be provided as needed to insure that vibration from pump discharge pipes is not transmitted to stands. Sand traps, when combined with a stand, shall have a minimum inside dimension of 30 in. and shall be constructed so that the bottom is at least 24 in. below the invert of the outlet of the pipeline. The downward velocity of flow of the water in a sand trap shall not exceed 0.25 ft/s. Gate stands shall be of sufficient dimension to accommodate the gate or gates and shall be large enough to make the gates accessible for repair. Float valve stands shall be large enough to provide accessibility for maintenance and to dampen surge. Stands closed to the atmosphere. If pressure-relief valves and air-vacuum, valves are used instead of open stands, all requirements under "Stands Open to the Atmosphere" shall apply except as modified below. The inside diameter of the closed stand shall be equal to or greater than that of the pipeline for at least 1 ft. above the top of the uppermost inlet or outlet pipe,. To facilitate attaching the pressure-relief valve and the air-and-vacuum valve, the stand may be capped at this point or, if additional height is required, the stand may be extended to the desired elevation by using the same inside diameter or a reduced cross section. If a reduced section is used, the cross-sectional area shall be such that it would produce an average velocity of no more than 10 ft/s if the entire flow were discharge through it. If no vertical offset is required between the pump discharge pipe and the outlet pipeline and the discharge pipe is "doglegged" below ground, the stand shall extend to a least 1 ft. above the highest part of the pump discharge pipe. An acceptable alternative design for stands requiring no vertical inlet (when inlet velocity is less than three times that of the outletting pipeline) shall be: - 1. Construct the dogleg section of the pump discharge pipe with the same nominal diameters as that of the pipeline. - 2. Install the pressure-relief valve and the air-and vacuum valve on top the upper horizontal section of the dogleg. Pressure relief and air-and vacuum valves shall be installed on stands with nominal size pipe required to fit the valves' threaded inlets. <u>Vents</u>. Vents must be designed into systems open to the atmosphere to provide for the removal and entry of air and protection from surge. They shall: 1. Have a minimum freeboard of 1 ft. above the hydraulic gradeline. The maximum height of the vent above the centerline of the pipeline must not exceed the maximum allowable working pressure of the pipe. 2. Have a cross-sectional area at least one half the cross-sectional area of the pipeline (both inside measurements) for a distance of at least one pipeline diameter up from the centerline of the pipeline. Above this elevation the vent may be reduced to 2 in. in diameter. These cross-sectional requirements shall apply when an air-and-vacuum valve is used instead of a vent, but the reduced section shall be increased to the nominal size pipe required to fit the valve's threaded inlet. An acceptable alternative is to install this valve in the side of a service outlet, provided that the riser is properly located and adequately sized. If both an air-and-vacuum valve and a pressure-relief valve are required at the location, the 10-ft/s velocity criterion given under "Stands Open to the Atmosphere" shall apply to the reduced section. 3. Be located at the downstream end of each lateral, at summits in the line, and at points where there are changes in grade in a downward direction of flow of more than 10 degrees. Air-and-vacuum valves. An air-and-vacuum valve, which has a large venting orifice, exhausts large quantities of air from the pipeline during filling operations and allows air to reenter the line and prevents a vacuum from forming during emptying operations. This type of valve is sometimes called air-vacuum valve or air vent and vacuum-relief valve. It is not continuous acting because it does not allow further escape of air at working pressure once the valve closes. Air-and-vacuum valves installed according to the standards for "Vents" can be used instead of open vents at any or all the locations listed in (3) under "Vents." Air-and-vacuum valves installed according to the standards for "Stands Closed to the Atmosphere" can be used in conjunction with pressure-relief valves as an alternative to open pump stands. A pipeline is considered open to the atmosphere if at least one stand, vent, or service outlet is unclosed and located so that it cannot be isolated from the system by line gates or valves. The diameter of the orifice (opening that controls air flow during filling and emptying operations) of an air-and-vacuum valve shall equal or exceed that specified below for the appropriate diameter of pipeline. Manufacturers of air-and-vacuum valves marketed for use under this standard shall provide dimensional data, which shall be the basis for selecting and accepting these valves. | Orifice Dia (inches) | | Diameter (inches) | | |----------------------|-----------------------|-------------------|----| | 3/4 | • • • • • • • • • • | • • • • • | 4 | | 1-1/4 | • • • • • • • • • • | | 6 | | 1-3/4 | • • • • • • • • • • | | 8 | | 2-1/4 | • • • • • • • • • • | • • • • • | 10 | | 2-3/4 | • • • • • • • • • • | | 12 | | 3-1/4 | | | 14 | | 3-1/2 | • • • • • • • • • • • | • • • • • | 15 | | 3-3/4 | • • • • • • • • • • • | • • • • • | 16 | | 4-0 | | | 18 | <u>Pressure-relief valves</u>. Pressure-relief valves can be used on low-pressure plastic pipelines as an alternative to stands open to the atmosphere. A pressure-relief valve shall serve the pressure-relief function of the open stand or vent for which it is an alternative. Pressure-relief valves do not function as air-release valves and shall not be used as substitutes for such valves if release of entrapped air is required. Pressure-relief valves shall be used in conjunction with air-and-vacuum valves at all pump stands and at the end of pipelines if needed to relieve surge at the end of the lines. The flow capacity of pressure-release valves shall be the pipeline design flow rate with a pipeline pressure no greater than 50 percent more than the permissible working pressure for the pipe. The pressure at which the valve starts to open shall be marked on each pressure-relief valve. Adjustable pressure-relief valves shall be sealed or otherwise altered to insure that the adjustment marked on the valve is not changed. Manufacturers of pressure-relief valves marketed for use under this standard shall provide capacity tables, based on performance tests, that give the discharge capacity of the valves at the maximum permissible pressure and differential pressure settings. Such tables shall be the basis for design of pressure setting and of acceptance of these valves. <u>Drainage</u>. Provisions shall be made for completely draining the pipeline if a hazard is imposed by freezing temperatures, drainage is recommended by the manufacture of the pipe or drainage of the line is specified for the job. If provisions for drainage are required, drainage outlets shall be located at all low places in the line. These outlets can drain into dry wells or to points of lower elevation. If drainage cannot be thus provided by gravity, provisions shall be made for emptying the line by pumping or by other means. <u>Flushing</u>. If provisions are needed for flushing the line free of sediment or other foreign material, a suitable valve shall be installed at the distal end of the pipeline. Thrust control. Anchors or thrust blocks shall be provided on pipelines having a working pressure of 25 lb/in.2 or greater at abrupt changes in pipeline grade, changes in horizontal alinement, or reduction in pipe size to absorb any axial thrust of the pipeline. Thrust blocks may also be needed at the end of the pipeline and at inline control valves. The pipe manufacturer's recommendations for thrust control shall be followed. In absence of such recommendations, the following formula should be used to design thrust blocks: $$A = ((98HD^2)/B) \sin (a/2)$$ #### Where: A = Bearing area of thrust block required in ft² H = Maximum working pressure in ft D = Inside diameter of pipe in ft B = Allowable passive pressure of the soil in lb/ft^2 a = Deflection angle of pipe bend, in degrees Area of thrust blocks for dead ends and tees shall be 0.7 times the area of block required for a 90-deflection angle of pipe bend. If adequate soil tests are not available, the allowable bearing soil pressure can be estimated from table 2. Table 2. - Allowable soil bearing pressure | Natural soil material | Depth | to center | of thru | st block | |--|-------|-----------|---------|----------| | | 2ft | 3ft | 4ft | 5ft | | Sound bedrock | 8,000 | 10,000 | 10,000 | 10,000 | | Dense Sand and gravel mix. (angle int. fric. = 40 deg.) | 1,200 | 1,800 | 2,400 | 3,000 | | Dense fine to coarse sand (angle int. fric. = 35 deg.) | 800 | 1,200 | 1,650 | 2,100 | | Silt and clay mixture (angle int. fric. = 25 deg.) | 500 | 700 | 950 | 1,200 | | Soft clay and organic soils (angle int. fric. = 10 deg.) | 200 | 300 | 400 | 500 | <u>Materials</u>. All materials described and required in this standard shall meet or exceed the minimum requirements listed for materials under "Specifications." ## Plans and specifications Plans and specifications for constructing low-pressure, underground, plastic irrigation pipelines shall be in keeping with this standard and shall describe the requirements for applying the practice to achieve its intended purpose. Irrigation Water Conveyance Low Pressure Underground Plastic Pipeline Colorado Supplement (CO-430-EE) #### General Construction operations shall be carried out in a manner to ensure that erosion, air and water pollution are minimized and held within legal limits. Equipment and methods used in construction shall be in accordance with the US Department of Labor, Occupational Safety and Health Administration. ### PLANNING CONSIDERATIONS Water Quantity. Surface water quantity, locally and downstream, are generally improved by the reduction of seepage and evaporation. Reduced diversion needed to compensate for previous delivery losses also improves quantity. Deep percolation or ground water recharge that may have occurred before the practice was installed, may be significantly reduced. If downstream base flow had previously occurred because of seepage from other conveyances, it could be eliminated or significantly reduced. Wildlife or aquatic habitat that had depended on seepage from the irrigation water conveyance will be decreased. Water Quality. Ground water quality effects from infiltration of poor quality water would be eliminated or significantly reduced. Deep percolation of saline water may be avoided. Sediment or sediment-attached substances discharged to downstream watercourses will be eliminated since no streambank or bed erosion would occur. Temperature increases common in an open conveyance may be eliminated by the pipeline. <u>Pressure Relief Valves</u>. Pressure relief valves shall meet the minimum requirements of Colorado Standard Plan, (CO-SSP), 71A, 71B, and 71C. Pressure relief valves and air release valves may both be attached to the same riser pipe. <u>Vents, Air Relief Valves and Air Release Valves</u>. Vents, air relief valves and air release valves shall meet the minimum requirements of CO-SSP-69 and CO-SSP-70. If the construction area permits, the pipe inlet vent should be located a distance L, (ft.) downstream from the pipe entrance. In addition there should be vents or air valves at all locations where open channel flows change to full pipe flows. Adequate provisions should be provided to fill the pipe slowly in accordance with table 1, or at a velocity less than 1 fps. <u>Check Valves</u>. In-line check valves installed in an irrigation pipeline to prevent pollution to the water source from chemigation injection shall meet the regulations of the Colorado Department of Agriculture. In-line chemigation check valve systems shall have, as a minimum, the following features: - a. An automatic quick-closing, spring-assisted check valve, located in the main line of the irrigation supply line. - b. An automatic low-pressure drain valve, located between the check valve and the irrigation water source. - c. An automatic vacuum relief valve, located between the check valve and the irrigation supply source. - d. An inspection port or viewing device, located in such a manner that the inlet to the low-pressure drain can be observed. <u>Drainage and Flushing</u>. The minimum pipe size required for drainage and flushing shall be 2 inches in diameter. Ball valves are preferred for use on drain pipes. <u>Pipe External Loading</u>. Pipelines installed under or adjacent to a roadway shall be designed for an H-20 truck loading. Construction activity and some farm implements may require site specific design using an H-20 truck loading. West National Technical Center Engineering Technical Note number W-22 shall be used to calculate pipe external loads, to determine the required pipe Standard Dimension Ratio, (SDR), and the type and density required for the pipe backfill. #### Installation Requirements Minimum Depth of Cover. The depth of cover over the pipeline shall be as follows: Pipe Diameter, (IN.) Minimum Depth of Cover, (IN.) 3 - 5 24 6 - 24 30 USDA-SCS Colorado CO-430-EE-2 March 1992 Pipes shall be drained or otherwise protected from freezing. Deviation from the minimum depth requirement must be approved by an authorized engineer. Trench Construction. For 4 in. through 18 in. diameter pipe sizes, the minimum trench width shall be 18 inches greater than the pipe diameter for vertical walled trenches and 12 inches greater than the pipe diameter for trenches with sloped sidewalls, (see Figure 1). The minimum trench width for pipe sizes larger than 18 inches shall be 36 inches greater than the pipe diameter for vertical walled trenches and 18 inches greater than the pipe diameter for trenches with sloped sidewalls, (see Figure 2). The minimum trench width criteria will not apply if precision excavation methods are used. Thrust Blocks. Concrete used for thrust blocks shall be allowed to cure for a minimum of two days prior to backfilling or pressurizing the pipe. Initial Backfill. All initial backfill shall have a maximum particle size of one (1) inch. The finished initial backfill for 18" diameter and smaller pipes shall extend to the top of the pipe, (see figure 1). Initial backfill for 20 inch diameter and larger pipes shall be coarse sand or gravel, and shall extend from the pipe bedding to a minimum depth equal to 70 percent of the pipe diameter, (see figure 2). Compaction shall be accomplished by either water packing or by hand or hand directed mechanical means. Water Packing shall be accomplished as described in NHCP-430-EE, except the initial and final backfill depth shall be sufficient to cover the top of the pipe after consolidation occurs. The pipe shall be filled gradually, (less than 1 fps or in accordance with table 1), prior to water packing, and enough water shall be added to the pipe trench to saturate the initial backfill. Compaction by hand or hand directed mechanical means shall be accomplished in 4 inch to 6 inch lifts. Initial backfill shall be compacted to a density no less than the density of the trench sidewalls as excavated in virgin soil and in non-boggy conditions. <u>Final Backfill</u>. The final backfill within 9-inches of the top of the pipe shall be soil or sand free of hard earth clods or stones greater than 1-inch diameter. The remaining final backfill shall be free of rocks or clods greater than 6-inches diameter. The backfill shall be placed to the level of natural ground, or to the design grade required to provide the minimum depth of cover after settlement. Table 1 - Suggested Maximum Flow Rates for Filling Pipes | Nominal
<u>Pipe Dia.</u> | Fillin
<u>CFS</u> | g Rate
<u>GPM</u> | Nominal Pipe Dia. | Filli:
<u>CFS</u> | ng Rate
<u>GPM</u> | |-----------------------------|----------------------|----------------------|-------------------|----------------------|-----------------------| | 4 | .09 | 39 | - 14 | 1.1 | 480 | | 5 | .14 | 60 | 15 | 1.2 | 550 | | 6 | .20 | 90 | 18 | 1.8 | 790 | | 8 | .35 | 155 | 21 | 2.4 | 1080 | | 10 | .54 | 240 | 24 | 3.1 | 1400 | | 12 | .78 | 350 | | | | ### Operation and Maintenance Specific requirements for the operation and maintenance of irrigation pipelines shall be included on the standard plan, (O&M-430). Operation and maintenance needs shall be discussed with the cooperator prior to design and construction of the practice. A complete operation and maintenance plan shall be included with the construction plans and specifications for the practice. ### Plans and Specifications Specific requirements for the type, grade, and class of pipe, and any special backfill requirements shall be shown on the drawings. Specifications should be in accordance with Colorado Construction Specification "Plastic Pipe Conduits". # PLASTIC PIPE TRENCH DETAILS ## FIGURE 1 - 4" TO 18" DIA. PIPE FIGURE 2 - 20" DIA. AND GREATER #### NOTES: - Trench slope will vary as needed for construction safety in accordance with OSHA requirements and site conditions. - 2. The trench will be overexcavated 4" and backfilled to grade where the in-situ materials are unacceptable for pipe bedding - 3. Unless otherwise specified, "select material"-for initial backfill will be coarse sand or gravel with 1" maximum size. Supplement to: CO-430-EE U.S. DEPT. OF AGRICULTURE SOIL CONSERVATION RESTICE CO-430.2D O co COLORADO MEET 5 or _____ ### **Irrigation Water Conveyance** Low-Pressure, Underground, Plastic Pipeline Specifications #### Installation Minimum depth of cover. Pipe shall be installed at sufficient depth below the ground surface to provide protection from hazards imposed by traffic crossing, farming operations, freezing temperatures, or soil cracking. The minimum depth of the cover shall be 30 in, but in soils subject to deep cracking, the cover shall be a minimum of 36 in. The maximum depth of cover for all pipe sizes shall be 4 ft. In areas where the pipe will not be susceptible to freezing and vehicular or cultivation hazards and the soils do not crack appreciably when dry, the minimum depth of cover may be reduced to 18 in for pipes 4 in through 6 in. in diameter and 24 in for pipes more than 6 in. in diameter. At low places on the ground surface, extra fill may be placed over the pipeline to provide the minimum depth of cover. The top width of the fill shall be no less than 10 ft and the side slopes no steeper than 6 horizontal to 1 vertical. The fill material shall be placed and compacted before the trench is excavated. If extra protection is needed at vehicular crossings, encasement pipe or other approved methods may be used. Trench construction. The trench at any point below the top of the pipe shall be only wide enough to permit the pipe to be easily placed and joined and to allow the initial backfill material to be uniformly placed under the haunches and along the side of the pipe. The maximum trench width shall be 30 in greater than the diameter of the pipe. If the trench is precision excavated and has a semicircular bottom that closely fits the pipe, the width shall not exceed the outside diameter of the pipe by more that 10 percent. The trench bottom shall be uniform so that the pipe lies on the bottom without bridging. Clods, rocks, and uneven spots that can damage the pipe or cause nonuniform support shall be removed. If there are rocks, boulders, or any other material that might damage the pipe, the trench bottom shall be undercut a minimum of 4 in below final grade and filled with bedding material consisting of sand or compacted fine-grained soils. Provisions shall be made to insure safe working conditions if unstable soil, trench depth, or other conditions can be hazardous to personnel working in the trench. Placement. Care shall be taken to prevent permanent distortion and damage when handling the pipe during unusually warm or cold weather. The pipe shall be allowed to come within a few degrees of the temperature it will have after it is completely covered before placing the backfill, other than that needed for shading, or before connecting the pipe to other facilities. The pipe shall be uniformly and continuously supported over its entire length on firm stable material. Blocking or mounding shall not be used to bring the pipe to final grade. For pipe with belled ends, bell holes shall be excavated in the bedding material, as needed, to allow for unobstructed assembly of the joint and to permit the body of the pipe to be in contact with the bedding material throughout its length. Joints and connections. All joints and connections shall be capable of withstanding the design maximum working pressure for the pipeline without leakage and shall leave the inside of the line free of any obstruction that can reduce its capacity below design requirements. All fittings, such as couplings, reducers, bends, tees, and crosses, shall be installed according to the recommendations of the pipe manufacturer. Fittings and appurtenances made of steel or other metals susceptible to corrosion shall be adequately protected by wrapping them with plastic tape or applying a coating having high corrosion-preventative qualities. If plastic tape is used, all surfaces shall be thoroughly cleaned and then coated with a primer compatible with the tape before wrapping them. Thrust blocks. Thrust blocks must be formed against solid unexcavated earth undamaged by mechanical equipment. They shall be constructed of concrete, and the space between the pipe and the trench wall shall be filled to the height of the outside diameter of the pipe or as specified by the manufacturer. Testing. The pipeline shall be thoroughly and completely tested at the design pressure for pressure strength and leakage while uncovered or only partly backfilled. If it is necessary to partly backfill the line before testing to hold the pipeline in place, backfilling shall be according to the specifications under "Initial Backfill." All joints and connections shall be left uncovered for inspection; only the body of the pipe sections shall be covered. The line shall be slowly filled with water. Adequate provision shall be made for air release during filling operations, taking care to bleed all entrapped air. The pressure shall be slowly built up to the maximum design working pressure of the system. While this pressure is maintained, all exposed pipe, fittings, valves, hydrants, joints, appurtenances, and covered parts of the line shall be examined for leaks. Any leaks shall be repaired and the system retested. It shall be demonstrated by testing that the pipeline will function properly at design capacity. At or below design capacity there shall be no objectionable flow conditions such as water hammer, continuing unsteady delivery of water, damage to the pipeline, or detrimental discharge from control valves, vents, or stands. Initial backfill. The pipeline shall be filled with water and maintained near design working pressure during backfilling. The initial backfill material shall be selected soil or sand free from rocks or stones larger than 1 in. in diameter and earth clods greater than about 2 in. in diameter. The material shall be placed so that the pipe will not be displaced, excessively deformed, or damaged. Water packing shall be used when possible to consolidate the initial backfill around the pipe. The initial backfill, before wetting, shall be of sufficient depth to insure complete coverage of the pipe after consolidation occurs. Water packing is accomplished by adding enough water to diked reaches of the trench to saturate the initial backfill thoroughly without excessive pooling. After the initial fill is saturated, the pipeline shall remain full until after final backfilling. The waterpacked backfill shall be allowed to dry until firm enough to walk on before final backfill is begun. If conditions do not permit water packing, the initial backfill shall be placed in layers and compacted around and about 6 in above the pipe by hand or mechanical methods to the soil density required to provide adequate lateral support to the pipe. An exception to water packing or to compacting the initial backfill completely is permitted if the trench is precision excavated and has a semicircular bottom that closely fits the pipe and the width does not exceed the outside diameter of the pipe by more than 10 percent. With this type of trench construction, all other initial and final backfill requirements shall apply, including having the pipe under water pressure during backfilling. Final backfill. Final backfill material shall be free of large rocks, frozen clods, and other debris greater than 3 in. in diameter. The material shall be placed and spread in approximately uniform layers so that there will be no unfilled spaces in the backfill and the backfill will be level with the natural ground or at the design grade required to provide the minimum depth of cover after settlement takes place. Rolling equipment shall not be used to consolidate the final backfill. All special backfilling recommendations of the pipe manufacturer shall be met. Basis of acceptance. The acceptability of the pipeline shall be determined by inspections to check compliance with all the provisions of this standard, including the design of the line, the pipe and pipe markings, the appurtenances, and the minimum installation requirements. Certification and guarantee. If requested by the state conservation engineer, the manufacturer shall certify that the pipe meets the requirements specified in this standard. The installing contractor shall certify that the installation complies with the requirements of this standard and shall furnish a written guarantee that protects the owner against defective workmanship and materials for not less than 1 year and that identifies the manufacturer and markings of the pipe used. ### Materials Quality of plastic pipe. The compound used in manufacturing low-pressure plastic irrigation pipe shall meet the requirements of one of the following materials and have an established long-term hydrostatic design stress rating as listed: Polyvinyl chloride (PVC) as specified in ASTM-D-1784 | *************************************** | Hydrostatic | | | | | |---|---------------------|------------------|-------------|--|--| | Material | Code classification | design
stress | Designation | | | | | | B4r² | | | | | Type I, Grade 1 | 12454-B | 2,000 | PVC 1120 | | | | Type I, Grade 2 | | 2,000 | PVC 1220 | | | | Type II, Grade 1 | | 1,000 | PVC 2110 | | | | Type II, Grade 1 | | 1,250 | PVC 2112 | | | | Type II, Grade 1 | 14333-D | 1,600 | PVC 2116 | | | ## Acrylonitrile-butadiene-styrene (ABS) as specified in ASTM-D-1788 | | Hydrostatic | | | | |------------------|---------------------|------------------|-------------|--| | Material | Code classification | design
stress | Designation | | | | | DAH? | | | | Type I, Grade 2 | 5-2-2 | 1,000 | ABS 1210 | | | Type I, Grade 3 | | 1,600 | ABS 1316 | | | Type II, Grade 1 | 4-4-5 | 1,250 | ABS 2112 | | #### Polyethylene (PE) as specified in ASTM-D-1248 | | Hydrostatic | | | | |--------------------|---------------------|------------------|-------------|--| | Material | Code classification | design
stress | Designation | | | | | £/m² | | | | Grade P23, Class C | IIC-P23 | 630 | PE 2306 | | | Grade P33, Class C | | 630 | PE 3306 | | | Grade P34, Class C | IVC-P34 | 630 | PE 3406 | | Clean rework material, generated from the manufacturer's own pipe production, may be used by the same manufacturer if the pipe produced meets all requirements of this standard. The pipe shall be homogeneous throughout and free from visible cracks, holes, foreign matter, or other defects. The pipe shall be as uniform in color, opacity, density, and other physical properties as is commercially practicable. Pipe requirements. Plastic irrigation pipe (PIP) installed under this standard shall be classified in one of the following categories: - Low-head irrigation pipe shall meet the applicable dimensional requirements listed in table 3. The maximum working pressure for this pipe shall be 50 ft of head or 22 lb/in². - 50-lb/in² plastic irrigation pipe shall meet the dimensional requirements listed in table 4 for the appropriate PVC and ABS plastic materials. The maximum allowable working pressure for this pipe shall be 50 lb/in². In addition, the pipe shall meet the requirements specified in the sections of the ASTM designations listed below, except that the dimensions and tolerances in tables 3 and 4 of this standard shall apply. For ABS pipe, ASTM-D-2282 sections pertaining to dimensions and tolerances, conditioning, test conditions, and sampling. For PE pipe, ASTM-D-2239 sections pertaining to dimensions and tolerances, bond, carbon black, density, conditioning, test conditions, and sampling. IPS-size pipe (outside diameter same as that for iron pipe sizes) manufactured, tested, and marked according to one of the following ASTM specifications and having a pressure rating for water of at least 50 lb/in² but less than 80 lb/in² shall be acceptable under this standard. However, the maximum operating pressure for such pipe shall be 50 lb/in². | ASTM- | Standard specification for | |--------|--| | D-1785 | Polyvinyl chloride (PVC) Plastic Pipe,
Schedules 40, 80, and 120. | | D-2241 | Polyvinyl chloride (PVC) Plastic Pipe,
(SDR-PR). | | D-2672 | Bell-End Polyvinyl chloride (PVC) Plastic Pipe. | | D-1527 | Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe, Schedules 40 and 80. | | D-2104 | Polyethylene (PE) Plastic Pipe, Schedule 40. | | D-2447 | Polyethylene (PE) Plastic Pipe, Schedules
40 and 80. Based on outside diameter. | Markings. Markings on the pipe shall include the following, which shall be spaced at intervals of not more than 5 ft: - 1. Nominal pipe size (for example, 10 in). - Type of plastic material according to the designation code (for example, PVC 1120). - 3. Maximum allowable working pressure: - a. For low-head plastic irrigation pipe (50-ft head or 22 lb/in²). - b. For the 50-lb/in² plastic irrigation pipe (50 lb/in²). - c. For IPS pipe, the appropriate pressure rating (for example, 63 lb/in²). - Specification designation with which pipe complies: a. For plastic irrigation pipe, the designation PIP. b. For IPS-size pipe, the ASTM designation (for example, D-2241). - 5. Manufacturer's name (or trademark) and code. Fittings and couplers. All fittings and couplers shall equal or exceed the same pressure rating of the pipe with which they are used. They shall be made of material that is recommended for use with the pipe. The pipe shall be furnished with belled ends or separate couplers and fittings that are suitable for joining the pipe and appurtenances by means of a solvent cement joint, rubber gasket-type joint, or other methods recommended by the pipe manufacturer. Belled ends, sleeves, or plastic fittings shall be made of the same type of plastic material as the pipe. Fittings or belled ends for solvent cement joints shall have tapered sockets with socket lengths of at least 40 percent of the inside diameter of the pipe or 3 in, whichever is greater. Sleeves for clamp-type joints shall provide a minimum of 4 in overlap between the sleeve and the pipe or fitting. Solvent cement joints. Solvent for solvent cement joints shall conform to ASTM specifications D-2564 for PVC pipe and fittings and D-2235 for ABS pipe and fittings. Rubber gasket joints. Rubber gasket joints shall conform to the following: - Push-on type—A joint in which an elastomeric ring gasket is compressed in the annular space between a belled end or socket and spigot end of pipe. - Mechanical joint—A joint in which a seal or gasket is compressed by application of pressure through a mechanical device. The pipe spigot shall have a wall thickness sufficient to withstand, without deformation or collapse, the compressive force exerted when the fitting is tightened. Table 3.—Dimensions of low-head plastic irrigation pipe (PIP) | | | PVC and A | BS materials | | | PE ma | terials | | |--------------|------------------|-----------|----------------|-----------|-----------------|--------------|----------------|-----------| | Nominal size | Outside diameter | | Wall thickness | | Inside diameter | | Wall thickness | | | | Average | Tolerance | Minimum | Tolerance | Average | Tolerance | Minimum | Tolerance | | in | | h | | h | | h | | n | | 4 | 4.13 | ±0.009 | 0.065 | + 0.020 | 4.00 | ± 0.020 | 0.085 | + 0.020 | | 6 | 6.14 | ±.011 | .070 | + .020 | 7.00 | ±.025 | .095 | +.020 | | 8 | 8.16 | ±.015 | .080 | + .020 | 8.00 | ±.040 | .120 | +.020 | | 10 | 10.20 | ±.015 | .100 | + .020 | 10.00 | ± .040 | .135 | +.020 | | 12 | 12.24 | ±.015 | .120 | + .020 | 12.00 | ± .040 | .155 | +.020 | | 14 | 14.28 | ±.015 | .140 | + .020 | 14.00 | ± .040 | .185 | +.022 | | 15 | 15.30 | ±.015 | .150 | + .020 | 15.00 | ± .040 | .200 | +.024 | | 18 | 18.70 | ±.028 | .200 | +.024 | | - | | | | 21 | 22.04 | ±.033 | .236 | +.028 | | | | | | 24 | 24.80 | ±.037 | .266 | + .032 | | | | | Table 4.—Dimensions of 50-lb/in² PVC and ABS plastic irrigation pipe (PIP) | | Outside | diameter | | | Wall thickness | | | |-----------------|---------|-----------|-----------|----------------------|----------------------|----------------------|---------| | Nominal
size | Average | Tolerance | Allowance | PVC 1120
PVC 1220 | PVC 2116
ABS 1316 | PVC 2112
ABS 2112 | PVC 211 | | in . | | | | | | | | | 4 | 4.13 | ± 0.009 | Minimum | 0.065 | 0.065 | 0.081 | 0.101 | | • | | | tolerance | +.020 | +.020 | +.020 | ***** | | 6 | 6.14 | ±.011 | Minimum | .076 | .096 | .120 | .150 | | | * | | tolerance | +.020 | +.020 | +.020 | + .020 | | 8 | 8.16 | ±.015 | Minimum | .101 | .128 | .160 | .199 | | | | | tolerance | +.020 | +.020 | +.020 | +.024 | | 10 | 10.20 | ±.015 | Minimum | .126 | .159 | .200 | .249 | | | | | tolerance | +.020 | + .020 | +.024 | +.030 | | 12 | 12.24 | ±.015 | Minimum | .151 | .191 | .240 | .299 | | | | | tolerance | +.020 | +.023 | + .029 | +.036 | | 14 | 14.28 | ±.015 | Minimum | .176 | .223 | .280 | .348 | | | | | tolerance | +.021 | +.027 | +.034 | +.042 | | 15 | 15.30 | ±.015 | Minimum | .189 | .239 | .300 | .373 | | | | | tolerance | +.023 | +.029 | +.036 | +.045 | | 18 | 18.70 | ±.028 | Minimum | .230 | .292 | .367 | .456 | | | | | tolerance | +.027 | + .033 | +.042 | +.054 | - Dimensions of the coupling and spigot end shall be according to the manufacturer's standard design dimensions and tolerances. Such dimensions shall be gaged at sufficiently frequent intervals to insure dimensional control and satisfactory joint assembly. The method for measuring these dimensions shall be according to Method D-2122. - 4. Gasket dimensions shall be according to the manufacturer's standard design dimensions and tolerances. The size and shape of the gasket must insure an adequate compressive force against the spigot and socket after assembly to effect a positive seal under all combinations of joint and gasket tolerances when tested according to items 12 and 13. - Elastomeric compounds must be noncrazing to pipe. The gasket in the cured state shall not cause craze marks, pits, or blisters when in contact with the plastic pipe. The plastic pipe can be stained in the area of gasket contact. - Lubricant, if required, shall be suitable for lubricating the parts of the joints in the assembly. The lubricant shall have no deteriorating effects on the gasket and pipe materials. - The joint shall be designed to provide a permanent seal. - The gasket shall be the sole element depended upon to make the joint flexible and watertight. The gasket shall be a continuous elastomeric ring. - 9. The joint design may provide for the axial deflection of a pipe joint by permitting one side of the outside perimeter of the joint to open wider than the compressed position without reducing its watertightness. If greater deflections than provided by the joint design are required, suitable fittings must be provided. - 10. The joint components shall be of such design that they will withstand the forces caused by the compression of the gasket when joined without cracking or fracturing when tested according to items 12 and 13. - All surfaces of the joint upon or against which the gasket may bear shall be smooth, free of cracks, fractures, or imperfections that could adversely affect the performance of the joint. - 12. Pipes in straight alinement—Laboratory hydrostatic pressure tests on joints shall be made on an assembly of two sections of pipe properly connected according to the joint design. After the pipe sections are fitted together with the gasket or gaskets in place, the assembly shall be subjected for the minutes shown to an internal hydrostatic pressure of: | | 11111 | |------------------------|-------| | 0 pressure | 5 | | 1/4 working pressure | 5 | | 1/2 working pressure | 5 | | 3/4 working pressure | . 5 | | 1.0 working pressure | 10 | | 2-1/2 working pressure | 60 | | | | - 13. Pipes in maximum deflected position—Using a pipe and joint system, similar to that described in 12, deflect the test sections axially to the maximum deflection specified by the manufacturer and subjected to the pressures indicated under 12. - 14. Two specimens of any one size shall pass the tests. Retest of two other specimens shall be required if one of the first two fails. Three of the four shall pass the